Chapter 12
Voltage Sweep Generators

1. For the UJT relaxation oscillator shown in Fig. 12p.1, $R_{BB} = 4 \, \text{k}\Omega$, $R_1 = 0.1 \, \text{k}\Omega$, $\eta = 0.6$, $V_V = 3 \, \text{V}$, $I_V = 10 \, \text{mA}$, $I_P = 0.01 \, \text{mA}$. (i) Calculate R_{B1} and R_{B2} under quiescent condition (i.e., $I_E = 0$). (ii) Calculate the peak voltage, V_P. (iii) Calculate the permissible value of R. (iv) Calculate the frequency assuming that the retrace time is negligible. Also calculate f using the value of η. (v) Calculate the frequency, also considering the retrace time. Assume $R_{B1} = 0.1 \, \text{k}\Omega$ during retrace time. (vi) Calculate the voltage levels of V_{B1}. (vii) Plot the waveforms of the output voltage and V_{B1}.

Solution:

Given $R_{BB} = 4 \, \text{k}\Omega, \eta = 0.6$.

(i) $\eta = \frac{R_{B1}}{R_{B1} + R_{B2}} = \frac{R_{B1}}{R_{BB}}$

$0.6 = \frac{R_{B1}}{4 \, \text{k}\Omega}$

$R_{B1} = 0.6 \times 4 \, \text{k}\Omega = 2.4 \, \text{k}\Omega$

We have $R_{BB} = R_{B1} + R_{B2}$

$\therefore R_{B2} = R_{BB} - R_{B1} = 4 \, \text{k}\Omega - 2.4 \, \text{k}\Omega = 1.6 \, \text{k}\Omega$

(ii) The circuit that enables the calculation of V_P is shown in Fig. 1.1.
Fig. 1.1 Circuit to calculate V_P

From Fig. 1.1,

$$V_P = 0.7V + V_{BB} \times \frac{(R_{B1} + R_1)}{R_{BB} + R_1} = 0.7 + 20 \times \frac{(2.4 + 0.1)}{(4 + 0.1)} = 12.89 \text{ V.}$$

(iii) $R_{\text{min}} = \frac{(V_{BB} - V_Y)}{I_Y} = \frac{(20 - 3)}{10 \times 10^{-3}} = 1.7 \text{ kΩ}$

$$R_{\text{max}} = \frac{(V_{BB} - V_P)}{I_P} = \frac{(20 - 12.89)}{0.01 \times 10^{-3}} = 711 \text{ kΩ}$$

$R_{\text{min}} < R < R_{\text{max}}$

Choose $R = 100 \text{ kΩ}$.

(iv) $T_s = RC \ln \left(\frac{(V_{BB} - V_Y)}{(V_{BB} - V_P)} \right) = 100 \times 10^3 \times 100 \times 10^{-9} \times \ln \left(\frac{(20 - 3)}{(20 - 12.89)} \right) = 8.7 \text{ ms.}$

$$f = \frac{1}{8.7 \times 10^{-3}} = 114.9 \text{ Hz.}$$

T_s using the value of η is given as:

$$T_s = RC \ln \left(\frac{1}{1 - \eta} \right) = 100 \times 10^3 \times 100 \times 10^{-9} \ln \left(\frac{1}{1 - 0.6} \right) = 9.1 \text{ ms.}$$

$$f = \frac{1}{9.1 \times 10^{-3}} = 109.8 \text{ Hz.}$$

(v) $T_r = (R_{B1} + R_1)C \times \ln \left(\frac{V_P}{V_Y} \right) = (0.1 + 0.1)10^3 \times 100 \times 10^{-9} \times \ln \left(\frac{12.89}{3} \right) = 29.1 \text{ μs.}$

$$T = T_s + T_r = 9.1 + 0.0291 = 9.129 \text{ ms.}$$

$$f = \frac{1}{9.129 \times 10^{-3}} = 109.54 \text{ Hz.}$$

(vi) V_{B1} during charging of C is given as:

$$V_{B1} = V_{BB} \times \frac{R_1}{(R_1 + R_{BB})} = \frac{20 \times 0.1}{0.1 + 4} = 0.487 \text{ V.}$$

V_{B1} during discharge of C is given by:

$$V_{B1} = (V_P - V_F) \times \frac{0.1}{0.1 + 0.1} = \frac{(12.89 - 0.7)}{2} = 6.09 \text{ V.}$$

V_F is the diode voltage when ON, Fig. 1.1.

(vii) Waveforms of the output and V_{B1} are shown in Fig. 1.2.
2. For the UJT relaxation oscillator is shown in Fig. 12p.2. Find (i) the sweep amplitude; (ii) the slope and displacement errors; and (iii) the duration of the sweep. Given that $V_V = 3\, \text{V}$, $\eta = 0.6$.

Solution:
The waveform of the sweep generator is shown in Fig. 2.1.

$V_{BB} = 20\, \text{V}$, $V_{YY} = 50\, \text{V}$, $R = 100\, \text{k}\Omega$, $C = 0.1\, \mu\text{F}$
We know that \(V_p = \eta V_{bb} + V_F = 0.6 \times 20 + 0.7 = 12.7 \) V

We have \(V_v = 3 \) V

(i) Amplitude of the sweep \(V_s = V_p - V_v = 12.7 - 3 = 9.7 \) V.

(ii) Sweep speed error, \(e_s = \frac{V_s}{V} = \frac{V_s}{V_{yy} - V_v} = \frac{9.7}{50 - 3} = 0.206 = 20.6\% \)

Displacement error, \(e_d = \frac{1}{8} e_s = \frac{1}{8} \times 20.6\% = 2.57\% \)

(iii) Sweep time, \(T_s = RC \log \left[\frac{V_{yy} - V_v}{V_{yy} - V_p} \right] \)

\[
T_s = 100 \times 10^3 \times 0.1 \times 10^{-6} \times \log \left[\frac{50 - 3}{50 - 12.7} \right]
\]

\(T_s = 2.31 \) ms

3. (a) Design a UJT sweep circuit shown in Fig.12p.3(b) to generate a sweep of 15 V amplitude and 3 ms duration, given that \(\eta = 0.6 \). If the sweep error is 10 per cent and \(T_r = 1 \) per cent of \(T_s \), calculate \(V_{bb}, V_{yy}, R, R_1, R_2 \) and \(C \). If the sweep duration is 300 \(\mu s \), calculate the new value of \(C \). The V–I characteristic of UJT is as shown in Fig. 12p.3(a)

Solution:

From the characteristics, we have \(V_p = 3 \) V, \(I_v = 1 \times 10^{-3} \) A, \(I_p = 0.3 \times 10^{-3} \) A

Given \(V_s = 15 \) V and \(e_s = 0.1 \)

\(\therefore V_p = V_s + V_v = 15 + 3 = 18 \) V.

Peak-to-peak excursion of the output swing = \(Y_{yy} - V_v \).

\[
e_s = \frac{V_s}{V} = \frac{V_s}{V_{yy} - V_v}
\]

\[
0.1 = \frac{15}{V_{yy} - 3}
\]

\(\therefore V_{yy} = 153 \) V.
Given \(\eta = 0.6 \). We have \(V_p = \eta V_{BB} + V_F \).

\[
V_{BB} = \frac{V_p - V_F}{\eta} = \frac{18 - 0.6}{0.6} = 29 \text{ V}.
\]

To calculate \(R \) and \(C \)

\[
T_s = RC \log \frac{V_{yy} - V_F}{V_{yy} - V_p} = RC \log \frac{153 - 3}{153 - 18} = 0.105 RC
\]

\[
R_{\text{max}} = \frac{V_{BB} - V_p}{I_p} = \frac{29 - 18}{0.3 \times 10^{-3}} = 36.66 \text{ k}\Omega
\]

\[
R_{\text{min}} = \frac{V_{BB} - V_F}{I_F} = \frac{29 - 3}{1 \times 10^{-3}} = 26 \text{ k}\Omega
\]

\(R \) should lie between 26 k\(\Omega \) and 36 k\(\Omega \). Choose \(R = 33 \text{ k}\Omega \)

\[
RC = 28.57 \times 10^{-3}
\]

\[
C = \frac{28.57 \times 10^{-3}}{33 \times 10^3} = 0.865 \mu\text{F}
\]

Given \(T_r = 1 \) per cent of \(T_s \)

\[
T_r = 0.01 \times 3 \times 10^{-3}
\]

\[
C = \frac{T_r}{R C} = \frac{0.01 \times 3 \times 10^{-3}}{0.865 \times 10^{-6}} = 34.68 \approx 35 \text{ \Omega}
\]

\(R_2 \) is higher than \(R_1 \) and must be of the order of several hundred ohms. Let

\(R_2 = 10 \times R_1 = 350 \text{ \Omega} \). If \(T_r \) is to be 300 \(\mu \text{s} \) \(C \) should be \(\frac{1}{10} \) of the earlier value. By reducing the value of \(C \), the charging current will be reduced, but by reducing the value of \(R \) the charging current is increased, which is undesirable. So the reduction of \(C \) is advisable.

\[
C_{\text{new}} = \frac{0.865 \mu\text{F}}{10} = 86.5 \text{ nF}
\]

4. For the Miller’s sweep shown in Fig.12p.5, \(V_{CC} = 24 \text{ V}, R_{C2} = 2 \text{ k}\Omega, R_{C1} = 10 \text{ k}\Omega \) and \(C = 1 \mu\text{F} \). The amplitude of the sweep is 18 V. (a) Calculate the sweep duration \(T_s \); (b) the retrace time \(T_r \); (c) frequency of the sweep generator and (d) the slope error. The transistor has the following parameters: \(h_{fe} = 100, h_{ie} = 1 \text{ k}\Omega, h_{oe} = \frac{1}{20 \text{ k}\Omega} \) and \(h_{re} = 2.5 \times 10^{-4} \).
Solution:

(a)

\[V_s = \frac{V_{cc}}{R_{c1}C} \times T_s \]

\[T_s = \frac{V_s}{V_{cc}} \times R_{c1}C = \frac{18}{24} \times 10^3 \times 1 \times 10^{-6} = 7.5 \text{ ms.} \]

(b) Retrace time \(T_r = \frac{V_s}{V_{cc}} \times R_{c2}C = \frac{18}{24} \times 2 \times 10^3 \times 1 \times 10^{-6} = 1.5 \text{ ms.} \)

(c) \(T = T_s + T_r = 7.5 + 1.5 = 9 \text{ ms.} \)

\[f = \frac{1000}{9} = 111.11 \text{ Hz}. \]

(d) \(A_1 = \frac{-h_{fe}}{1 + h_{re}R_{c2}} = \frac{-100}{1 + \frac{2}{20}} = -90.90 \)

\[R_i = h_{le} + h_{re}A_1R_{c2} = 1 + (2.5 \times 10^{-4})(-90.90)(2) = (1 - 0.045) = 0.955 \text{ k}\Omega \]

\[A = A_1 \frac{R_{c2}}{R_i} = -90.90 \times \frac{2}{0.955} = -190.36 \]

\[e_s(Miller) = \frac{V_s}{V_{cc}} \times \frac{1}{|A|} \times \frac{1 + R_{c1}}{R_i} = \frac{18}{24} \times \frac{1}{190.66} \times \frac{10}{0.955} = 0.045 \]

\[e_s = 4.5 \text{ per cent.} \]

6. The transistor used in the bootstrap circuit shown in Fig.12p.6 has the following \(h \)-parameter values. \(h_{re} = 2.5 \times 10^{-4}, h_{le} = 1.1 \text{ k}\Omega, h_{fe} = 60, 1/h_{re} = 40 \text{ k}\Omega. \) Assume \(V_{BE(sat)} = V_{CE(sat)} = 0. \) If the applied input gating voltage is a symmetrical square wave of the frequency 9.5 kHz, determine the time-base amplitude, retrace time and recovery time.
Solution:

$V_s = V_{CC} = 12 \text{ V}$

At the end of the input pulse, Q_1 once again goes into saturation.

$$i_{B1} = \frac{V_{CC}}{R_b} = \frac{12}{30 \times 10^3} = 0.4 \text{ mA}$$

$$i_{C1} = h_{fe} i_{B1} = 60 \times 0.4 = 24 \text{ mA}$$

The retrace time T_r is

$$T_r = \frac{V_s}{h_{fe} i_{B1}} C_1 = \frac{12}{60} \times 0.06 \times 10^{-6} = 31.4 \mu\text{s}$$

$$T = \frac{1}{f} = \frac{1}{9.5 \times 10^3} = 0.105 \text{ ms}$$

Recovery time $T_1 = \frac{V_{CC}}{V_{EE}} \times \frac{R_E}{R_1} \times T = \frac{12}{12} \times 4 \times 0.105 \times 10^{-3} = 35.08 \mu\text{s}$.

7. Find (a) the sweep amplitude and (b) the slope error for the bootstrap sweep generator shown in Fig.12p.7, when a 2-kHz symmetrical square wave is applied as an input to it. Plot to scale the input and output waveforms. The typical h-parameter values of transistor are, $h_{fe} = 90$, $1/h_{oe} = 35 \text{ k}\Omega$, $h_{fe} = 1 \text{ k}\Omega$ and $h_{re} = 1$. Assume all forward-biased junction voltages are zero.
Solution:

Time period of input waveform $T = \frac{1}{f} = \frac{1}{2 \times 10^3} = 0.5 \text{ ms.}$

The input is a symmetrical square wave, so the gate width $T_g = \frac{T}{2} = 0.25 \text{ ms.}$

Maximum value of ramp voltage or sweep amplitude is equal to

$$V_s = \frac{V_{cc}T_g}{R_1C_1} = \frac{12 \times 0.25 \times 10^{-3}}{10 \times 10^3 \times 0.3 \times 10^{-6}} = 10 \text{ V}$$

For an emitter follower, the current gain is

$$A_I = \frac{h_{fe} + 1}{1 + h_{ie}R_E} = \frac{90 + 1}{1 + \frac{5 \times 10^3}{35 \times 10^3}} = 79.68$$

Input impedance $= R_i = h_{ie} + A_I R_E$

$$R_i = 1 \times 10^3 + 79.68 \times 5 \times 10^3 = 399.4 \text{ k}\Omega$$

We have $(1 - A) = \frac{h_{ie}}{R_i} = \frac{1}{399.4} = 0.0025$

Sweep error $e_s = \frac{V_s}{V_{cc}} \left(\frac{R_i}{R} + (1 - A) \right) = \frac{10}{12} \left[\frac{10}{399.4} + 0.0025 \right] = 0.0029$

Sweep error $= 0.29 \text{ per cent.}$

7. The transistor bootstrap has the following parameters: $V_{cc} = 20 \text{ V}$, $V_{ee} = -20 \text{ V}$, $R_B = 15 \text{ k}\Omega$, $R_1 = 5 \text{ k}\Omega$, $R_E = 2.5 \text{ k}\Omega$, $C_1 = 0.001 \mu\text{F}$, $C_3 = 0.25 \mu\text{F}$. The input gate has amplitude of 1 V and a width of 50 μs. The transistor parameters are $h_{fe} = 60$, $h_{ie} = 2 \text{ k}\Omega$, $1/h_{oe} = 10 \text{ k}\Omega$, $h_{re} = 10^{-4}$ and the forward-biased junction voltages are negligible. The diode is ideal. (i) Evaluate (a) the sweep speed and the maximum amplitude of the sweep; (b) the retrace time; (c) the peak voltage change across C_3 and the recovery time and (d) the slope error. (ii) Plot the gate voltage, collector current i_{c1}, and the output voltage v_o.
Solution:

(i) Referring to circuit in Fig.12p.8

(a) Sweep speed = \(\frac{I_1}{C_1} = \frac{V_{CC}}{R_1C_1} = \frac{20}{5 \times 10^3 \times 0.001 \times 10^{-6}} = 4 \times 10^6 \text{ V/s} \)

\[V_{s/(\text{max})} = V_{CC} = 20 \text{ V} = \text{sweep speed} \times T_s \]

\[\text{i.e.} \quad 20 = (4 \times 10^6)T_s \]

\[\therefore \quad \text{Sweep time}, \quad T_s = \frac{20}{4 \times 10^6} = 5 \mu s. \]

(b) At the end of the input pulse, \(Q_1 \) once again goes into saturation.

\[i_{B1} = \frac{V_{CC}}{R_B} = \frac{20}{15 \times 10^3} = 1.33 \text{ mA} \]

\[i_{C1} = h_{fe} i_{B1} = 60 \times 1.33 \text{ mA} = 79.8 \text{ mA} \]

The retrace time \(T_r \) is

\[T_r = \frac{V_s}{V_{CC}} C_1 = \frac{20}{15 \times 10^3} = 0.26 \mu s \]

\[T = T_g + T_r = (50 + 0.26) = 50.26 \mu s. \]

Recovery time \(T_i = \frac{V_{CC} R_E}{V_{EE} R_i} \times T = \frac{15}{10} \times \frac{5}{10} 	imes 63.18 \times 10^{-6} = 47.385 \mu s \)

(c) To find the slope error:

The current gain of the emitter follower is given by:

\[A_f = \frac{1 + h_{fe}}{1 + h_{oe} R_E} = \frac{1 + 60}{1 + \frac{1}{10} \times 2.5} = \frac{61}{1.25} = 48.8 \]
Input impedance of the emitter follower is given by

\[R_i = h_{ie} + A_I R_E \]

\[1 - A = \frac{h_{ie}}{R_i} \]

\(A \) is the voltage gain of the emitter follower.

\[R_i = h_{ie} + A_I R_E = 2 \text{k}\Omega + 48.8 \times 2.5 \text{k}\Omega = 124 \text{k}\Omega \]

\[1 - A = \frac{h_{ie}}{R_i} = \frac{2}{124} = 0.016 \]

(d) The slope error, \(e_s = \left[1 - A + \frac{R_i}{R_i} \right] \frac{V_s}{V_{cc}} \]

\[e_s = \left[0.016 + \frac{5}{124} \right] \frac{20}{20} = 0.056 \]

\(e_s = 5.6 \text{ per cent.} \)

(ii) Using the above calculations, the waveforms can be sketched as shown in Fig. 8.1.

Fig. 8.1 Waveforms